800小说网 yanqingzw.com,台球博士无错无删减全文免费阅读!
凌志早早来到实验室,把旁边会议室的投影仪布置好,然后把自己做的ppt拷进去,今天他要分享论文。
不一会儿,师门同学们陆陆续续都来到了实验室,紧接着,导师王海波也到了。
凌志的导师王海波40出头,今年刚刚评上了教授,正是志得意满的时候。听说家里的小儿子也刚刚出生,正是双喜临门之时。虽然在计算机领域深耕多年,但并没有拼过头,头顶的平头发型还是郁郁葱葱。行走在路上时总是脚步带风,看见谁都一副笑眯眯的样子。就是年纪逐渐上来了,颈椎经常性地不舒服,凌志想什么时候有机会在教师节送王导一个按摩仪试试看,也算报答王导的教育之恩。
“今天有没有人分享的”
凌志没有犹豫,说道:
“老师,我来吧。”
凌志打开自己的ppt,毫不怯场地讲道:
“今天给大家分享一下我最近阶段性的实验结果以及论文。”
……
“这是我的数据预处理过程,我大致分为了5个步骤,……”
“这是我对句子对匹配的实验结果,两个句子属于同一人所发布即为正样本,不是同一人即为负样本。……”
“你先等下,你分类所用的特征都有哪些”
老王问道。
“哦哦,我一会儿会详细说,我现在仅仅是先把结果抛出来。……”
“这个正样本和负样本的叫法合不合理嘞这个实验结果你们觉得怎么样”
老王跟大家讨论了一阵,然后让凌志继续。
“我使用的特征是一个14个维度的向量,包括人工提取的特征和神经网络提取的特征。……”
凌志讲ppt沿用了老王以前对学生们的教导——多用图表,少用文字,凌志深以为然。事实上ppt本来就是用来突出重点的,如果往上面堆砌太多文字的话,讲者容易对着ppt念,听者也会觉得乏味,不会自己思考。而用图片和少量文字突出重点,就比较容易让听众们接受。
正如接下来凌志分享的论文,用一张图说明了一句话中每个词之间的远近关系。
“比如现在有两句话,‘他对媒体发表言论’以及‘他出席了新闻发布会’。虽然这两句话意思很接近,但我们如何用程序来进行打分判断呢我们应当将第一句话中的‘他’所对应的词向量跟第二句话中的每个词进行对比,找出意义最接近的那个。后面以此类推,‘媒体’对应‘新闻发布会’,‘发表’对应‘出席’。就这样通过词向量之间相似度的计算,进而合并为两个句子之间的相似度。”
凌志展示出两个句子之间的相似度:0.912,大家很容易地理解了两个句子之间的相似度是如何计算出的,因为图上每个词之间的距离远近都非常清晰。
之后凌志开始解释一些技术细节,包括每个词的词向量如何计算出来等等。
作为主讲人,凌志非常清楚讲解时需要详略得当,所以不会过多阐述细节,只用图表解释了文章的核心思想。所以讲好ppt确实不容易,细节不能太过深入,但也不能一带而过,把握好一个度是很重要的。
随着凌志分享完,说声谢谢后,会议室里大家不自觉地响起了掌声。凌志有时候会注意到,一般在对大众讲话时,结尾加一句“谢谢”,会让观众们不由自主地鼓掌。然而大家给他鼓掌并不是单纯捧他场,而是确实觉得凌志讲得好。
“不错,实验过程和细节讲的很清楚,问题也分析的到位,论文也很值得借鉴。行,下一个,还有谁要讲”
凌志长舒一口气,坐到其他位置上。有一个刚考上研究生,提前进来实验室的师弟站了起来,打开了自己的ppt。
“额,各位师兄师姐好,今天我想来讲一篇论文,题目叫……”
很明显有点紧张,不过凌志一点也不在意,当初自己也是这么过来的嘛。
“这篇论文的算法是这样的,……”
“你等会儿,都跟你们讲过了,不要把原论文列出的算法英文伪代码直接贴到ppt里面,你们这样做谁会去看啊,那么复杂。你应该像凌志那样画图表现出来,这样别人看起来才觉得简单易懂,知道了吗不要让我一再强调。”
“哦哦,抱歉老师,我以后一定注意。”
“行,那你继续。”
于是师弟战战兢兢地讲完了自己的论文,也不知道大家听没听懂,最怕空气突然安静。
凌志没觉得师弟有多差,差的话也就不会坐在那里了,只不过第一次讲解ppt,可能考虑不到观众们的感受。虽然自己也没听懂多少,但也不是很在意,反正也不是自己的研究方向。真要是跟自己密切相关,那就私下里重读论文,自己去理解。
想起刚进实验室时候的自己,那时候参加组会,听师兄师姐们讲解ppt听得晕晕乎乎的,组会之后狂查资料弥补概念。现在想想,倒不是看不起当初的自己,事实上了解自己不了解的概念也是很重要的。只不过自己当初的心态太过着急了,完全可以慢慢来。
不知不觉组会已经来到11点,老王又说了几句场面话,上午的组会就宣告结束。
凌志早早来到实验室,把旁边会议室的投影仪布置好,然后把自己做的ppt拷进去,今天他要分享论文。
不一会儿,师门同学们陆陆续续都来到了实验室,紧接着,导师王海波也到了。
凌志的导师王海波40出头,今年刚刚评上了教授,正是志得意满的时候。听说家里的小儿子也刚刚出生,正是双喜临门之时。虽然在计算机领域深耕多年,但并没有拼过头,头顶的平头发型还是郁郁葱葱。行走在路上时总是脚步带风,看见谁都一副笑眯眯的样子。就是年纪逐渐上来了,颈椎经常性地不舒服,凌志想什么时候有机会在教师节送王导一个按摩仪试试看,也算报答王导的教育之恩。
“今天有没有人分享的”
凌志没有犹豫,说道:
“老师,我来吧。”
凌志打开自己的ppt,毫不怯场地讲道:
“今天给大家分享一下我最近阶段性的实验结果以及论文。”
……
“这是我的数据预处理过程,我大致分为了5个步骤,……”
“这是我对句子对匹配的实验结果,两个句子属于同一人所发布即为正样本,不是同一人即为负样本。……”
“你先等下,你分类所用的特征都有哪些”
老王问道。
“哦哦,我一会儿会详细说,我现在仅仅是先把结果抛出来。……”
“这个正样本和负样本的叫法合不合理嘞这个实验结果你们觉得怎么样”
老王跟大家讨论了一阵,然后让凌志继续。
“我使用的特征是一个14个维度的向量,包括人工提取的特征和神经网络提取的特征。……”
凌志讲ppt沿用了老王以前对学生们的教导——多用图表,少用文字,凌志深以为然。事实上ppt本来就是用来突出重点的,如果往上面堆砌太多文字的话,讲者容易对着ppt念,听者也会觉得乏味,不会自己思考。而用图片和少量文字突出重点,就比较容易让听众们接受。
正如接下来凌志分享的论文,用一张图说明了一句话中每个词之间的远近关系。
“比如现在有两句话,‘他对媒体发表言论’以及‘他出席了新闻发布会’。虽然这两句话意思很接近,但我们如何用程序来进行打分判断呢我们应当将第一句话中的‘他’所对应的词向量跟第二句话中的每个词进行对比,找出意义最接近的那个。后面以此类推,‘媒体’对应‘新闻发布会’,‘发表’对应‘出席’。就这样通过词向量之间相似度的计算,进而合并为两个句子之间的相似度。”
凌志展示出两个句子之间的相似度:0.912,大家很容易地理解了两个句子之间的相似度是如何计算出的,因为图上每个词之间的距离远近都非常清晰。
之后凌志开始解释一些技术细节,包括每个词的词向量如何计算出来等等。
作为主讲人,凌志非常清楚讲解时需要详略得当,所以不会过多阐述细节,只用图表解释了文章的核心思想。所以讲好ppt确实不容易,细节不能太过深入,但也不能一带而过,把握好一个度是很重要的。
随着凌志分享完,说声谢谢后,会议室里大家不自觉地响起了掌声。凌志有时候会注意到,一般在对大众讲话时,结尾加一句“谢谢”,会让观众们不由自主地鼓掌。然而大家给他鼓掌并不是单纯捧他场,而是确实觉得凌志讲得好。
“不错,实验过程和细节讲的很清楚,问题也分析的到位,论文也很值得借鉴。行,下一个,还有谁要讲”
凌志长舒一口气,坐到其他位置上。有一个刚考上研究生,提前进来实验室的师弟站了起来,打开了自己的ppt。
“额,各位师兄师姐好,今天我想来讲一篇论文,题目叫……”
很明显有点紧张,不过凌志一点也不在意,当初自己也是这么过来的嘛。
“这篇论文的算法是这样的,……”
“你等会儿,都跟你们讲过了,不要把原论文列出的算法英文伪代码直接贴到ppt里面,你们这样做谁会去看啊,那么复杂。你应该像凌志那样画图表现出来,这样别人看起来才觉得简单易懂,知道了吗不要让我一再强调。”
“哦哦,抱歉老师,我以后一定注意。”
“行,那你继续。”
于是师弟战战兢兢地讲完了自己的论文,也不知道大家听没听懂,最怕空气突然安静。
凌志没觉得师弟有多差,差的话也就不会坐在那里了,只不过第一次讲解ppt,可能考虑不到观众们的感受。虽然自己也没听懂多少,但也不是很在意,反正也不是自己的研究方向。真要是跟自己密切相关,那就私下里重读论文,自己去理解。
想起刚进实验室时候的自己,那时候参加组会,听师兄师姐们讲解ppt听得晕晕乎乎的,组会之后狂查资料弥补概念。现在想想,倒不是看不起当初的自己,事实上了解自己不了解的概念也是很重要的。只不过自己当初的心态太过着急了,完全可以慢慢来。
不知不觉组会已经来到11点,老王又说了几句场面话,上午的组会就宣告结束。